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A novel partial element equivalent circuit (PEEC) formulation for solving full-Maxwell’s equations, with piecewise homogeneous and 

linear conductive, dielectric, and magnetic media, is presented. It is based on the Cell Method, which by using integral variables as 

problem unknowns, is naturally suited for developing circuit-like approaches such as PEEC. Volume meshing allows complex 3-D 

geometries, with electric and magnetic materials, to be discretized. EM couplings in the air domain are modelled by integral equations.  

Index Terms—PEEC, Cell Method, integral equations, electromagnetic compatibility, interconnects. 

 

I. INTRODUCTION 

INTEGRAL METHODS (IMs) are suitable for solving 2-D or 3-D 

high frequency electromagnetic (EM) problems including 

complex structures embedded in a large air domain [1][2]. The 

main drawback of IMs is that a dense linear system is obtained. 

This may be untreatable in the case of large-scale problems. The 

development of data compression techniques based, e.g., on H–

matrices with adaptive cross approximation (ACA) is however 

boosting the research on integral methods [3][4]. Recently, the 

Cell Method (CM) has proven to be particularly suited to build 

IMs by formulating EM problems directly in terms of degrees 

of freedom (DoFs), enforcing thus element continuity [4][7].   

 Among different IMs the partial element equivalent circuit 

(PEEC) method has shown to be capable of handling large-scale 

EM problems, derived from the design and the prototyping of 

electronic devices such as filters, power converters, printed 

circuit boards (PCBs), and interconnects [8][9]. For instance, 

the compliance of a device with electromagnetic interference 

(EMI) standards requires an accurate modeling of all parasitic 

coupling effects. The original PEEC formulation consists in the 

discretization of the Electric  Field Integral Equation (EFIE) by 

piecewise constant pulse basis functions in order to obtain an 

equivalent circuit of the electronic device. The advantages are 

manifold, i.e. an accurate modelling of EM interactions in the 

air domain and an easy integration with the external network 

which is particularly suited for design purposes. By formulating 

the field problem directly into an algebraic form, the CM is 

particularly suited for implementing PEEC formulations. So far 

2-D PEEC CM-based formulations for the discretization of thin 

conductive structures have been proposed [10][11].  

Recently, a face-element 3-D PEEC model, accounting for 

resistive, inductive, and capacitive effects with both conductors 

and dielectrics, has been presented [12]. Magnetic media, which 

are however required when modelling inductors on PCBs, have 

been considered only in [13]. The main idea of this work is to 

present a 3-D PEEC formulation, based on the CM, including 

conductive, dielectric, and magnetic materials. The purpose is 

to provide a fast EM simulator applicable for EMI problems and 

suitable for analyses ranging from extremely low to very high 

frequencies.  

II.  INTEGRAL FORMULATION  

Let Ω = ⋃𝑘 Ω𝑘  be the interior region, i.e. the union of 𝑛 

bounded and connected subdomains Ω𝑘 ⊂ ℝ3 , 𝑘 = 1 … 𝑛 , 

which include conductive, dielectric, and magnetic materials.  

Let ΩC = ℝ3\Ω be the exterior region, which is unbounded and 

includes field sources ( Ω0 ⊂ ΩC ). The interface between 

interior and exterior regions is thus Γ = 𝜕Ω = Ω ∩ ΩC. 

A. Magnetic and electric potentials  

In order to obtain a closed-form solution of Maxwell’s 

equations for linear and isotropic media equivalent dipole 

sources are introduced. Dielectric and magnetic media can be 

replaced in the free space by equivalent density distributions, 

i.e. the electric 𝐏 and the magnetic 𝐌 polarization densities.  

EM field problems with piecewise homogeneous conductors 

of electric conductivity σ, dielectrics of electric permittivity ε, 

and magnetic materials of permeability μ are governed by: 

𝐉 = σ 𝐄                                          in   Ω𝑐

𝐃 = ε 𝐄 = ε0 𝐄 + 𝐏                   in   Ω𝑑

𝐁 = μ 𝐇 = μ0 (𝐇 + 𝐌)          in   Ω𝑚 ,
     (1) 

where 𝐉 is the electric current density, 𝐄 and 𝐇 are the electric 

and magnetic field, 𝐃 is the electric displacement, and 𝐁 is the 

magnetic flux density. Space regions Ω𝑐 , Ω𝑑 , Ω𝑚  (with empty 

intersections) indicate the conductive, dielectric, and magnetic 

domain, respectively. ε0 , μ0  are ε , μ  in free space. From (1) 

polarization densities are derived, i.e. 𝐏 = 𝜀0𝜒𝑑𝐄 , 𝐌 = 𝜒𝑚𝐇 , 

where 𝜒𝑑 and 𝜒𝑚 are the electric and magnetic susceptibility.       

By introducing equivalent sources, Maxwell’s equations in 

ℝ3 can be formulated in the frequency domain as [14]:  

∇ 𝐄 = −𝑖𝜔 𝐁                                                    
∇ (μ0

−𝟏𝐁) = 𝐉𝟎 + 𝐉 + 𝐉𝑚 + 𝐉𝑑 + ∂t(ε0𝐄) 

∇ ⋅ (ε0𝐄) = 𝜌 + 𝜌𝑑                                            
∇ ⋅ 𝐁 = 0,                                                              

    (2) 

where 𝑖 is the imaginary unit, ω is the angular frequency, 𝐉𝟎 is 

the source current density in Ω0, and 𝐉𝑚 = ∇ 𝐌, 𝐉d = ∂t𝐏 are 

the magnetic and the polarization current density in Ω𝑚 and  Ω𝑑. 

𝜌  and 𝜌𝑑 = −∇ ⋅ 𝐏  are the free and bound charge density, 

respectively. From the div-free condition, the magnetic flux 

density in (2) can be expressed as 𝐁 = ∇ 𝐀, where 𝐀 is the 

magnetic vector potential. The first equation in (2) thus 
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becomes 𝐄 = −𝑖𝜔𝐀 − ∇𝜑 , where φ  is the electric scalar 

potential. By using Lorenz’s gauge, Maxwell’s equations, 

expressed in terms of potentials, become:  

∆ 𝐀 + 𝑘2 𝐀 = −𝜇0 (𝐉𝟎 + 𝐉𝑒 + 𝐉𝑚),     (3) 

∆ 𝜑 + 𝑘2 𝜑 = −𝜀0
−1𝜌𝑒,         (4) 

where 𝑘 = √𝜔2𝜀0𝜇0 is a constant parameter, 𝐉𝑒  and 𝜌𝑒  are the 

current and charge density in the electric domain Ω𝑒 = Ω𝑐 ∪ Ω𝑑 

(𝐉𝑒 = 𝐉  in Ω𝑐   or 𝐉𝑒 = 𝐉𝑑  in Ω𝑑 , 𝜌𝑒 = 𝜌  in Ω𝑐  or 𝜌𝑒 = 𝜌𝑑  in Ω𝑑 ). 

By introducing the scalar free space 3-D Green function 

𝑔(𝑥, 𝑦) = 𝑒−𝑖𝑘|𝑥−𝑦|/(4𝜋|𝑥 − 𝑦|) , it can be proven that the 

integral solutions of (3) and (4) in Ω𝐶  are:  

𝐀(𝑥) = 𝐀𝟎(𝑥) + 𝜇0 ∫  𝑔(𝑥, 𝑦)(𝐉𝑒(𝑦) + 𝐉𝑚(𝑦))𝑑𝑦,
Ω

       (5) 

𝜑(𝑥) = 𝜀0
−1 ∫  𝑔(𝑥, 𝑦) 𝜌𝑒(𝑦)𝑑𝑦,

Ω
          (6) 

where the field 𝐀𝟎 is generated by the source current density.  

B. Cell Method discretization  

The computational domain is discretized into a tetrahedral 

mesh (primal grid 𝒢Ω, with 𝑁 nodes and 𝐸 edges). Dual grids 

𝒢Ω  and 𝒢Γ  are then defined on Ω  and Γ  by taking the 

barycentric subdivisions of the primal grids 𝒢Ω and 𝒢Γ, i.e. the 

restriction of 𝒢Ω  to Γ . The augmented dual grid is built by 

joining volume and boundary grids as 𝒢ΩΓ = 𝒢Ω ∪ 𝒢Γ  [15]. 

These grids are related to the following incidence matrices, 

describing the connectivity between elements: 𝐃Ω (volumes to 

faces on 𝒢Ω ), 𝐂Ω  (faces to edges on 𝒢Ω ), 𝐆Ω = 𝐃Ω
T   (edges to 

nodes on 𝒢Ω), 𝐂Γ (faces to edges on 𝒢Γ), and 𝐆Γ = 𝐂Γ
T (edges to 

nodes on 𝒢Γ ). Operators 𝐆Ω𝑒
, 𝐆Γ𝑒

  are restriction of 𝐆Ω, 𝐆Γ  to 

domain Ω𝑒, and operator 𝐂Ω𝑚
 that one of 𝐂Ω to domain Ω𝑚. 

The arrays of DoFs for the 3-D PEEC defined on the primal 

grid are currents on faces 𝑓𝑖, 𝐣𝑒 = (𝐽𝑖)Ω𝑒
, with  𝐽𝑖 = ∫ 𝐉

𝑓𝑖
⋅ 𝑑𝑺 in 

Ω𝑒  and magnetizations on edges 𝑒𝑖 , 𝐦 = (𝑚𝑖)Ω𝑚
 , with 𝑚𝑖 =

∫ 𝐌
𝑒𝑖

⋅ 𝑑𝒍 in Ω𝑚. Those defined on the dual grid are magnetic 

vector potentials on edges 𝑒̃𝑖, 𝐚̃𝑒 = (𝑎̃𝑖)Ω𝑒
, with 𝑎̃𝑖 = ∫ 𝐀

𝑒̃𝑖
⋅ 𝑑𝒍 

in Ω𝑒 , magnetic fluxes on faces 𝑓𝑖 , 𝐛̃𝒎 = (𝑏̃𝑖)Ω𝑚
 , with 𝑏̃𝑖 =

∫ 𝐁
𝑓̃𝑖

⋅ 𝑑𝑺  in Ω𝑚 , and electric scalar potentials on nodes 𝑛̃𝑖 , 

𝚽̃𝑒 = (Φ̃𝑖)Ω𝑒
, where Φ̃𝑖 = 𝜑(𝑥𝑛̃𝑖

) in Ω𝑒 is evaluated by (6).  

The coupling between Ω and ΩC is obtained by imposing the 

electric and magnetic constitutive relationships in weak form: 

∫
Ω𝑒

w𝑖
𝑓(𝑥) ⋅ (𝜎̂−1 𝐉𝑒(𝑥) −  𝐄(𝑥))𝑑𝑥 = 0,              (7) 

∫
Ω𝑚

w𝑖
𝑒(𝑥) ⋅ (ν̂−1 𝐌(𝑥) − 𝐁(𝑥))𝑑𝑥 = 0,              (8) 

where w𝑖
𝑓
, w𝑖

𝑒 are face and edge vector basis functions. 𝜎̂ is the 

equivalent conductivity in Ω𝑒  ( 𝜎̂ = 𝜎  in Ω𝑐 , 𝜎̂ = 𝑖𝜔𝜀0𝜒𝑑  in 

Ω𝑑) and 𝜈̂ = 𝜒𝑚/𝜇 is the equivalent reluctivity in Ω𝑚.  

By inserting 𝐀 and φ provided by (5) and (6) into (7) and (8), 

the following matrix equations are obtained:   

  𝐑 𝐣𝑒 + 𝑖𝜔 𝐚̃𝑒 + 𝐆Ω𝑒
𝚽̃𝑒 = −𝑖𝜔𝐚̃𝟎,𝑒 − 𝐆Γ𝑒

𝚽̃Γ𝑒
,    (9) 

𝐒 𝐦 − 𝐛̃𝑚 = 𝐛̃𝟎,𝑚,   (10) 

𝐑 = (𝑅𝒊𝒋)𝛀𝒆
, 𝐒 = (𝑆𝒊𝒋)𝛀𝒎

are consititutive matrices, with 𝑅𝑖𝑗 =

∫
Ω𝑒

𝜎̂−1 w𝑖
𝑓(𝑥) ⋅ w𝑗

𝑓(𝑥) 𝑑𝑥, 𝑆𝑖𝑗 = ∫
Ω𝑚

𝜈̂−1 w𝑖
𝑒(𝑥) ⋅ w𝑗

𝑒(𝑥) 𝑑𝑥; 

𝐚̃𝑒 = 𝐋𝑒𝐣𝑒 + 𝐋𝑚𝐣𝑚, 𝐛̃𝑚 = 𝐌𝑒𝐣𝑒 + 𝐌𝑚𝐣𝑚 are integral terms. 

By imposing the electric and magnetic charge conservation 

as 𝐃Ω𝑒
𝐣𝑒 = −𝑖𝜔 𝐪𝒆  and 𝐣𝑚 = 𝐂Ω𝑚

𝐦 , and by discretizing (6) 

into 𝚽̃𝑒 = 𝐏𝑒  𝐪𝒆, the final matrix system is assembled as:   

[

𝐑 + 𝑖𝜔𝐋 𝑖𝜔𝐋𝑚𝐂Ω𝑚
𝐆̃Ω𝑒

−𝐌𝑒 𝐒 − 𝐌𝑚𝐂Ω𝑚
𝕆

𝐏𝑒𝐃Ω𝑒
𝕆 𝑖𝜔𝕀 

] [
𝐣𝑒

𝐦
𝚽̃𝑒

] = [

−𝑖𝜔𝐚̃𝟎,Ω𝑒
− 𝐆̃Γ𝑒

𝚽̃Γ𝑒

𝐛̃𝟎,Ω𝑚

𝕆

] (11) 

 The extended paper will describe the solution procedure for 

(11) and will provide examples of application to relevant cases.   
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